An extension of the Kahane-Khinchine inequality
نویسندگان
چکیده
منابع مشابه
An Extension of the Kahane-khinchine Inequality
(2) r n N I I P Ï 1/p r n N \\} E j ; ^ J >cp ExyTM>*J fr )l lli==1 II ; l l l i = 1 II ) Recalling that in general {E| f ^ } 1 ^ decreases to exp E log \f\ as p decreases to zero, one sees that (1) is a strictly stronger statement than (2); in fact (1) says simply that cp may be taken bounded away from zero in (2). Note that the inequality obtained from (1) by replacing ej with the jth Rademac...
متن کاملKahane-Khinchin’s inequality for quasi-norms
We extend the recent results of R. Lata la and O. Guédon about equivalence of Lq-norms of logconcave random variables (KahaneKhinchin’s inequality) to the quasi-convex case. We construct examples of quasi-convex bodies Kn ⊂ IRn which demonstrate that this equivalence fails for uniformly distributed vector on Kn (recall that the uniformly distributed vector on a convex body is logconcave). Our e...
متن کاملAn extension of Maclaurins inequality
Let G be a graph of order n and clique number !: For every x = (x1; : : : ; xn) 2 Rn and 1 s !; set fs (G;x) = X fxi1 : : : xis : fi1; : : : ; isg is an s-clique of Gg ; and let s (G;x) = fs (G;x) ! s 1 : We show that if x 0; then 1 (G;x) 1=2 2 (G;x) 1=! ! (G;x) : This extends the inequality of Maclaurin (G = Kn) and generalizes the inequality of Motzkin and Straus. In addition, if x > 0; for e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1988
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1988-15596-6